35,630 research outputs found

    A mesoscale numerical model and the development of a severe storm prediction system

    Get PDF
    The use of a mesoscale numerical model for predicting preferred zones of severe storm development is analyzed. A 60 consecutive day real-time test of the prediction system during the spring of 1978 proved useful in determining the problems and potentialities of such a system. A case study of severe storm development from this test period is described and compared to the model forecast fields

    Assessment of the risk due to release of carbon fiber in civil aircraft accidents, phase 2

    Get PDF
    The risk associated with the potential use of carbon fiber composite material in commercial jet aircraft is investigated. A simulation model developed to generate risk profiles for several airports is described. The risk profiles show the probability that the cost due to accidents in any year exceeds a given amount. The computer model simulates aircraft accidents with fire, release of fibers, their downwind transport and infiltration of buildings, equipment failures, and resulting ecomomic impact. The individual airport results were combined to yield the national risk profile

    Eigenstate Structure in Graphs and Disordered Lattices

    Full text link
    We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures such as the wave function intensity distribution and the inverse participation ratio. The result is much less ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly describe the eigenstate structure.Comment: 4 pages, including 2 figure

    Beyond the First Recurrence in Scar Phenomena

    Full text link
    The scarring effect of short unstable periodic orbits up to times of the order of the first recurrence is well understood. Much less is known, however, about what happens past this short-time limit. By considering the evolution of a dynamically averaged wave packet, we show that the dynamics for longer times is controlled by only a few related short periodic orbits and their interplay.Comment: 4 pages, 4 Postscript figures, submitted to Phys. Rev. Let

    Development of a severe local storm prediction system: A 60-day test of a mesoscale primitive equation model

    Get PDF
    The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined

    Timing the Nearby Isolated Neutron Star RX J1856.5-3754

    Full text link
    RX J1856.5-3754 is the X-ray brightest among the nearby isolated neutron stars. Its X-ray spectrum is thermal, and is reproduced remarkably well by a black-body, but its interpretation has remained puzzling. One reason is that the source did not exhibit pulsations, and hence a magnetic field strength--vital input to atmosphere models--could not be estimated. Recently, however, very weak pulsations were discovered. Here, we analyze these in detail, using all available data from the XMM-Newton and Chandra X-ray observatories. From frequency measurements, we set a 2-sigma upper limit to the frequency derivative of \dot\nu<1.3e-14 Hz/s. Trying possible phase-connected timing solutions, we find that one solution is far more likely than the others, and we infer a most probable value of \dot\nu=(-5.98+/-0.14)e-16 Hz/s. The inferred magnetic field strength is 1.5e13 G, comparable to what was found for similar neutron stars. From models, the field seems too strong to be consistent with the absence of spectral features for non-condensed atmospheres. It is sufficiently strong, however, that the surface could be condensed, but only if it is consists of heavy elements like iron. Our measurements imply a characteristic age of about 4 Myr. This is longer than the cooling and kinematic ages, as was found for similar objects, but at almost a factor ten, the discrepancy is more extreme. A puzzle raised by our measurement is that the implied rotational energy loss rate of about 3e30 erg/s is orders of magnitude smaller than what was inferred from the H-alpha nebula surrounding the source.Comment: 4 pages, 2 figures, 2 tables; accepted for publication in Astrophysical Journal (Letters
    • …
    corecore